师资队伍

当前位置:首页 > 师资队伍 > 教师队伍 > 教授 > 正文

汤京永

时间:2019-06-11 11:50:18 来源: 作者: 阅读:
职位职称 邮箱地址

基本资料

汤京永

职务职称:博士, 教授, 硕士生导师
研究方向:最优化理论与算法

联系方式

联系地址:河南省信阳市南湖路237,464000
办公地点:数学学院516办公室
电子邮箱: tangjy@xynu.edu.cn

个人简介

汤京永,山东泰安人,博士,教授,硕士生导师,美国《Mathematical Reviews》评论员,河南省运筹学学会理事。2003年7月毕业于曲阜师范大学数学学院,获数学与应用数学学士学位,2006年7月毕业于曲阜师范大学运筹与管理学院,获运筹学与控制论硕士学位,同年9月进入信阳师范大学数学与统计学院工作。 2009年7月至2012年7月,在上海交通大学数学系读博士,获应用数学博士学位。2017年7 月至2018年7月, 在美国Louisiana State University数学系学术访问。主要从事对称锥优化、随机优化的研究,已在Annals of Operations Research、Computational Optimization and Applications、Journal of Optimization Theory and Application、Journal of Global Optimization、Optimization、Operations Research Letters、Optimization Letters、Numerical Algorithms、Optimization Methods and Software、Journal of Computational and Applied Mathematics等国际期刊上发表科研论文30余篇,ORCID: https://orcid.org/0000-0002-3038-5605。

发表的主要学术论文:

[1] Jingyong Tang, Jinchuan Zhou. Expected residual minimization formulation for stochastic absolute value equations. Journal of Optimization Theory and Applications,  203: 651–675, 2024

[2] Jingyong Tang, Jinchuan Zhou.  A Levenberg-Marquardt type algorithm with a Broyden-like update technique for solving nonlinear equations. Journal of Computational and Applied Mathematics, 2024.  DOI: 10.1016/j.cam.2024.116401

[3] Jingyong Tang, Jinchuan Zhou. A two-step Broyden-like method for nonlinear equations. Numerical Algorithms, 2024.  https://doi.org/10.1007/s11075-024-01827-7

[4] Jingyong Tang, Jinchuan Zhou, Zhongfeng Sun. A derivative-free line search technique for Broyden-like method with applications to NCP, wLCP and SI. Annals of Operations Research, 321:541-564, 2023

[5] Jingyong Tang, Jinchuan Zhou, Hongchao Zhang. An accelerated smoothing Newton method with cubic convergence for weighted complementarity problems. Journal of Optimization Theory and Applications, 196:641-665, 2023

[6] Jingyong Tang, Jinchuan Zhou. The solvability of weighted complementarity problems and a smoothing Newton algorithm under the local error bound. Optimization, 2023. https://doi.org/10.1080/02331934.2023.2269943.

[7] Jingyong Tang, Jinchuan Zhou. Improved convergence analysis of a smoothing Newton method for the circular cone programming. Optimization, 71(7): 2005-2031, 2022

[8] Jingyong Tang, Jinchuan Zhou. A modified damped Gauss-Newton method for non-monotone weighted linear complementarity problems. Optimization Methods and Software, 37(3):1145-1164, 2022

[9] Jingyong Tang, Jinchuan Zhou. A smoothing quasi-Newton method for solving general second-order cone complementarity problems. Journal of Global Optimization, 80: 415-438, 2021

[10] Jingyong Tang, Hongchao Zhang. A nonmonotone smoothing newton algorithm for weighted complementarity problem. Journal of Optimization Theory and Applications, 189: 679-715, 2021

[11] Jingyong Tang, Jinchuan Zhou. Quadratic convergence analysis of a nonmonotone Levenberg-Marquardt type method for the weighted nonlinear complementarity problem. Computational Optimization and Applications, 80:213-244, 2021.

[12] Jingyong Tang, Jinchuan Zhou. Smoothing inexact Newton method based on a new derivative-free nonmonotone line search for the NCP over circular cones. Annals of Operations Research, 295: 787-808, 2020

[13] Jingyong Tang, Jinchuan Zhou. A quadratically convergent descent method for the absolute value equations Ax+B|x| =0. Operations Research Letters, 47: 229-234, 2019.

[14] Jingyong Tang, Chengdai Huang, Yongli Wang. Predictor-corrector inexact smoothing algorithm for symmetric cone complementarity problems with Cartesian P0-property. Applied Numerical Mathematics, 143: 146-158, 2019

[15] Jingyong Tang, Jinchuan Zhou, Liang Fang. Strong convergence properties of a modified nonmonotone smoothing algorithm for the SCCP. Optimization Letters, 12: 411-424, 2018

[16] Jingyong Tang, Jinchuan Zhou, Liang Fang. An improved smoothing algorithm based on a regularized CHKS smoothing function for the  P0NCP over symmetric cones. Pacific Journal of Optimization, 14(4): 635-657, 2018

[17] Jinchuan Zhou, Jingyong Tang, Jein-Shan Chen. Parabolic second-order directional differentiability in the hadamard sense of the vector-valued functions associated with circular cones. Journal of Optimization Theory and Applications, 172: 802-823, 2017

[18] Jingyong Tang, Jinchuan Zhou, Liang Fang. A one-parametric class of smoothing functions and an improved regularization Newton method for the NCP. Optimization, 65(5): 977-1001, 2016

[19] Jinchuan Zhou, Jingyong Tang, Jein-Shan Chen. Further relationship between second-order cone and positive semidefinite matrix cone. Optimization, 65(12): 2115-2133, 2016

[20] Jingyong Tang, Li Dong, Jinchuan Zhou, Li Sun. A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search. Optimization, 64(9): 1935-1955, 2015

[21] Jingyong Tang, Guoping He, Li Dong, Liang Fang, Jinchuan Zhou. A globally and quadratically convergent smoothing Newton method for solving second-order cone optimization. Applied Mathematical Modelling, 39(8): 2180-2193, 2015

[22] Jingyong Tang, Li Dong, Liang Fang, Jinchuan Zhou. Smoothing Newton algorithm for the second-order cone programming with a nonmonotone line search. Optimization Letters, 8: 1753-1771, 2014

[23] Jingyong Tang, Guoping He, Liang Fang. A new non-interior continuation method for second-order cone programming. Journal of Numerical Mathematics, 21(4): 301-323, 2013

[24] Jingyong Tang, Guoping He, Liang Fang. A new Kernel function and its related properties for second-order cone optimization. Pacific Journal of Optimization, 8: 321-346, 2012