师资队伍

当前位置:首页 > 师资队伍 > 教师队伍 > 副教授 > 正文

曾凡奇

时间:2019-06-11 11:50:18 来源: 作者: 阅读:
职位职称 邮箱地址

一、基本资料

 

曾凡奇

职务职称:副教授
研究方向:几何分析

联系方式

联系地址:河南省信阳市信阳师范学院数学与统计学院,464000
联系电话:
办公地点:数学楼-516
电子邮箱:zengfq@xynu.edu.cn

个人简介

曾凡奇,副教授,博士,硕士生导师

研究领域:微分几何 研究方向: 几何分析

社会兼职:
美国《数学评论》评论员
德国《数学文摘》评论员

多个SCI期刊审稿人
 
教育经历:
2012.07
毕业于黄淮学院数学科学系 获理学学士学位
2015.07
毕业于河南师范大学数学与信息科学学院 获理学硕士学位
2018.07
毕业于同济大学数学科学学院 获理学博士学位

工作经历:
2018.07-
至今 信阳师范学院数学与统计学院工作

主讲课程:
 
微分几何、解析几何、微分流形


二、教学与科研

(一)发表的论文

1. Li, Xiaosheng; Zeng, Fanqi Gap theorems for compact quasi Sasaki-Ricci solitons. J. Nonlinear Math. Phys. 31 (2024), no. 1, Paper No. 59, 12 pp.

 

2. Zeng, Fanqi; Chang, Huiting; Sun, Yujun A Reilly type integral formula associated with diffusion-type operators and its applications. J. Math. Phys. Anal. Geom. 20 (2024), no. 2, 250–264.

 

3. Chang, Huiting; Zeng, Fanqi Geometric inequalities for affine connections on Riemannian manifolds. Bull. Korean Math. Soc. 61 (2024), no. 2, 433–450.

 

4. Wang, Pengyan; Zeng, Fanqi Estimates for the first eigenvalue of diffusion-type operators in weighted manifolds. J. Pseudo-Differ. Oper. Appl. 14 (2023), no. 4, Paper No. 60, 18 pp.

 

5. Zeng, Fanqi Some integral inequalities for the Laplacian with density on weighted manifolds with boundary. Bull. Korean Math. Soc. 60 (2023), no. 2, 325–338.

 

6. Zeng, Fanqi Some De Lellis–Topping type inequalities and their applications on an NCC Riemannian triple with boundary. Mediterr. J. Math. 20 (2023), no. 3, Paper No. 123, 17 pp.

 

7. Zeng, Fanqi Some almost-Schur type inequalities and applications on sub-static manifolds. Electron. Res. Arch. 30 (2022), no. 8, 2860–2870.

 

8. Zeng, Fanqi Gradient estimates and Harnack inequalities of a nonlinear heat equation for the Finsler-Laplacian. J. Math. Phys. Anal. Geom. 17 (2021), no. 4, 521–548.

 

9. Zeng, Fanqi Hamilton type gradient estimates for a general type of nonlinear parabolic equations on Riemannian manifolds. AIMS Math. 6 (2021), no. 10, 10506–10522.

 

10. Zeng, Fanqi On the h-almost Yamabe soliton. J. Math. Study 54 (2021), no. 4, 371–386.

 

 

11. Zeng, Fanqi Symmetry and monotonicity of solutions to fractional elliptic and parabolic equations. J. Korean Math. Soc. 58 (2021), no. 4, 1001–1017.

 

12. Zeng, Fanqi Gradient estimates for a nonlinear parabolic equation on complete smooth metric measure spaces. Mediterr. J. Math. 18 (2021), no. 4, Paper No. 161, 21 pp.

 

13. Zeng, Fanqi Gradient estimates for a nonlinear heat equation under Finsler-geometric flow. J. Partial Differ. Equ. 33 (2020), no. 1, 17–38.

 

14. Zeng, Fanqi Rigid properties of generalized τ-quasi Ricci-harmonic metrics. Results Math. 75 (2020), no. 4, Paper No. 165, 24 pp.

 

15. Zeng, Fanqi Symmetric properties for system involving uniformly elliptic nonlocal operators. Mediterr. J. Math. 17 (2020), no. 3, Paper No. 79, 17 pp.

 

16. Zeng, Fanqi Gradient estimates of a nonlinear elliptic equation for the V-Laplacian. Bull. Korean Math. Soc. 56 (2019), no. 4, 853–865.

 

17. Zeng, Fanqi; He, Qun Gradient estimates for a nonlinear heat equation under the Finsler-Ricci flow. Math. Slovaca 69 (2019), no. 2, 409–424.

 

18. Zeng, Fanqi; He, Qun; Chen, Bin The mean curvature flow in Minkowski spaces. Sci. China Math. 61 (2018), no. 10, 1833–1850.

 

19. Zeng, Fanqi Rigidity of τ-quasi Ricci-harmonic metrics. Indian J. Pure Appl. Math. 49 (2018), no. 3, 431–449.

 

20. Zeng, Fanqi; Huang, Guangyue L1 and L2 energy for heat equations on closed manifolds. Adv. Math. (China) 47 (2018), no. 2, 224–230.

 

21.Chen, Bin; He, Qun; Zeng, Fanqi Monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow. Pacific J. Math. 296 (2018), no. 1, 1–20.

 

22. Ma, Bingqing; Zeng, Fanqi Hamilton-Souplet-Zhang's gradient estimates and Liouville theorems for a nonlinear parabolic equation. C. R. Math. Acad. Sci. Paris 356 (2018), no. 5, 550–557.

 

23. Huang, Guangyue; Zeng, Fanqi The classification of static spaces and related problems. Colloq. Math. 151 (2018), no. 2, 189–202.

24. Zeng, Fanqi; He, Qun Reilly-type inequalities for the first eigenvalue of p-Laplacian of submanifolds in Minkowski spaces. Mediterr. J. Math. 14 (2017), no. 6, Paper No. 218, 9 pp.

 

25. He, Qun; Zeng, Fanqi; Zeng, Daxiao On the first eigenvalue of the mean Finsler-Laplacian. Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 4, 1162–1172.

 

26. Huang, Guangyue; Zeng, Fanqi De Lellis-Topping type inequalities for f-Laplacians. Studia Math. 232 (2016), no. 3, 189–199.

 

27. Huang, Guangyue; Xu, Ruiwei; Zeng, Fanqi Hamilton's gradient estimates and Liouville theorems for porous medium equations. J. Inequal. Appl. 2016, Paper No. 37, 7 pp.

 

28. Huang, Guangyue; Zeng, Fanqi A note on gradient generalized quasi-Einstein manifolds. J. Geom. 106 (2015), no. 2, 297–311.


29.Zeng, Fan-qi; Ma, Bing-qing The classification of gradient Ricci almost solitons. J. Math. (Wuhan) 34 (2014), no. 2, 251–258.


30.黄广月,曾凡奇.Ricci流上一类非线性抛物方程的梯度估计[J].河南师范大学学报(自然科学版),2014,42(02):1-6.

(二)项目

1. 河南省教育厅, 河南省高等学校重点科研项目, 21A110021, Funk空间中超曲面的各向异性平均曲率流, 2021-01 2022-12, 结题, 主持

2. 河南省科技厅, 河南省自然科学基金青年基金, 212300410235, 一类Funk型空间中超曲面的各向异性曲率流, 2021-01 2022-12, 结题, 主持




信阳师范学院 ⊙ 数学与统计学院