科学研究

当前位置:首页 > 科学研究 > 学术预告 > 正文

李代数结构与表示理论会议预告(二)

时间:2024-07-27 10:21:33 来源: 作者: 阅读:

报告题目1Deformation families of Novikov bialgebras via differential antisymmetric infinitesimal bialgebras

报告人:白承铭

报告时间:20240801日(周四)上午09:00开始

报告地点:信阳生态研究院报告厅

报告摘要:We generalize S.Gelfand's classical construction of a Novikov algebra from a commutative differential algebra to get a deformation family $(A,\circ_q)$of Novikov algebras by an admissible commutative differential algebra, which ensures a bialgebra theory of commutative differential algebras, enriching the antisymmetric infinitesimal bialgebra. Moreover, a deformation family of Novikov bialgebras is obtained, under certain  further condition. In particular, we obtain a bialgebra variation of S.Gelfand's construction with an interesting twist: every commutative and cocommutative differential antisymmetric infinitesimal bialgebra gives rise to a Novikov bialgebra whose underlying Novikov algebra is $(A,\circ_{-\frac{1}{2}})$ instead of $(A,\circ_0)$ which recovers the construction of S.Gelfand. This is the joint work with Yanyong Hong and Li Guo.

报告人简介:白承铭,现任南开大学党委常委、副校长,南开大学陈省身数学研究所教授,所长,国务院学位委员会第八届学科评议组成员,教育部核心数学与组合数学重点实验室主任,物理中的群论方法国际大会常务委员会委员。主要从事与数学物理和李理论相关的一些代数体系的结构及其应用的研究。曾获国家杰出青年科学基金资助和国务院政府特殊津贴,国家级知名专家。培养博士生和硕士生多名,其中的倪翔曾获中国数学会钟家庆数学奖优秀硕士论文奖

报告题目2Why should I study (degenerate) cyclotomic Birman-Murakami-Wenzl (宝马) algebra?

报告人:芮和兵

报告时间:20240801日(周四)上午09:40开始

报告地点:信阳生态研究院报告厅

报告摘要:About 30 years ago, Ariki proved the Lascoux-Leclerc-Thibon conjecture on Hecke algebra which says decomposition numbers of the  Hecke algebra can be computed via Kazhdan-Lusztig polynomials associated with the affine Weyl group of type $\tilde A_{e-1}$, where $e$ is the quantum characteristic of $q$.  Ariki’s result is available for the cyclotomic Hecke algebras or Ariki-Koike algebras. Song and the speaker introduced the notion of the cyclotomic Brauer category and tried to find a similar result.  In order to study the representations of the cyclotomic Brauer category, Gao, Song and the speaker introduced the notion of an upper finite weakly triangular decomposition for a locally unital and locally finite dimensional algebra $A$ over an algebraically closed field. We prove that the category $A$-lfdmod of locally finite dimensional left $A$-modules  is an upper finite fully stratified category in the sense of Brundan-Stroppel. As an application, we prove that the locally unital algebra $A$ associated to the cyclotomic Brauer category  admits an upper finite weakly triangular decomposition. This enables us to use the full subcategory of $A$-lfdmod in which each object admits a finite standard flag to categorify certain infinite dimensional $g$-module where $g$ is the classical limit of type AIII $i$-quantum group. This is a joint work with M. Gao and L. Song.

报告人简介:芮和兵,同济大学教授 ,国家杰出青年基金、上海市自然科学一等奖获得者。 研究课题长期得到国家自然科学基金项目资助。多年来一直从事表示论、李理论方面的研究,研究课题涉及李代数、量子群以及一些相关的有限维、无限维结合代数等。

报告题目3From super weyl module to super Virasoro modules

报告人:刘东

报告时间:20240801日(周四)上午10:40开始

报告地点:信阳生态研究院报告厅

报告摘要:In this talk, we introduce a new family of functors from the category of modules over the super Weyl algebra to the category of modules for the super-Virasoro algebras. The properties of these functors are investigated, with an emphasis on natural isomorphisms and irreducibility preservation. By utilizing these functors, we recover some old irreducible super-Virasoro modules, including those from the intermediate series as well as simple U(h)-free modules. Additionally, we provide several families of new irreducible super-Virasoro modules via our constructed functors.

报告人简介:刘东,教授,博士生导师,浙江省“151”第二层次人才。长期从事李代数的研究工作,在《J. Algebra》、《Commun. Contemp. Math》、《Proc Royal Soc Edinburgh》等期刊发表论文50多篇;主持国家自然科学基金面上项目3项、省部级科研项目4(含浙江省自然科学基金重点项目1);获浙江省自然科学基金委十二五优秀成果奖1项。

报告题目4On classification of finite-dimensional simple Balinsky-Novikov  superalgebras

报告人:裴玉峰

报告时间:20240801日(周四)上午11:10开始

报告地点:信阳生态研究院报告厅

报告摘要:In this talk,  we will discuss classification of all finite-dimensional simple BN superalgebras over algebraically closed fields with characteristic p > 2.  This is a joint work with  Dong Liu and Limeng Xia.

报告人简介:裴玉峰,湖州师范学院教授,博士生导师。从事李代数和表示论的研究工作,主持国家自然科学基金面上项目、青年基金项目、天元项目各1项,主持上海市自然科学基金项目2项。近年来在《Journal of the Institute of Mathematics of Jussieu》、《Communications in Contemporary Mathematics》、《Journal of Algebra》、《Journal of Pure and Applied algebra》等国际知名数学杂志上发表SCI收录文章40余篇,主编出版本科生教材《高等代数与解析几何(上、下)》一部。

报告题目5Whittaker modules

报告人:夏利猛

报告时间:20240801日(周四)上午11:40开始

报告地点:信阳生态研究院报告厅

报告摘要:In this talk we mainly introduce some background and development of the Whittaker modules over classical Lie algebras and quantum groups. Then we introduce our result in a recent  manuscript which deals with the classification problem of nonsingular Whittaker modules over Takiff algebras.

报告人简介:夏利猛,江苏大学理学院教授。2005年博士毕业于华东师范大学数学系,从事李代数及其表示理论的研究,在J. Algebra, J. Pure. Appl. Algebra等杂志上已发表SCI论文40余篇。